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The half-way similarity avoidance rule replicated using

phonetic data from European language varieties

Abstract: Previous work using lexical data from around the world has suggested that 

distances among language varieties are distributed such that varieties are typically either 

rather similar, qualifying as dialects of one another, or rather dissimilar, qualifying as 

different languages, with a scarcity of varieties that are around half-way similar. Wichmann 

(2019) observed that there is a bimodal distribution of distances with two roughly normal 

distributions separated by a valley. The previous work was based on a database mostly 

containing either descriptions of single languages or surveys covering several close varieties, 

so the bimodal distribution could potentially be an artifact of the underlying sample. Here we 

test whether a similar distribution is found when using another source of data and an unbiased

sample drawn from the cells of a geographical grid (of Central Europe). The data consists of 

18 lexemes from 274 doculects. Using Bayesian Beta regression and leave-one-out cross-

validation, we show that the data follows a bimodal distribution which is robust to sampling, 

and also to at least some aspects of the data (coarse- vs. fine-grained phonetic transcriptions).

Keywords: languages vs. dialects, phonetic distance, European languages, dialectometry, 

language classification

1. Introduction

In the past, attempts to distinguish languages and dialects have tended to either be qualitative 

in nature, subject to discussion and negotiation, sometimes with political implications (Van 

Rooy 2020), or else they have relied on some cut-off of intelligibility among speakers or 

along a measured continuum of similarity (typically lexical similarity) pertaining to 

languages (Voegelin and Harris 1951). Thus, attempts to distinguish dialects from languages 

2



have begged the question whether the distinction is a real one, inherent to languages, or 

whether it merely reflects a desire to impose such a distinction. Such a desire is completely 

understandable and reasonable, because we need to distinguish languages for many purposes. 

These include both scientific purposes, such as the organization of knowledge (catalogs, 

indexes, maps) or the analysis of linguistic diversity, and more applied purposes, such as 

revitalization strategies, literacy campaigns, translation efforts, and so on. Strong as this 

desire may be, it does not constitute evidence that the object of the desire actually exists 

independently of it.

In Wichmann (2019) it was observed that distances among varieties of related 

languages are distributed in such a way that they will tend to be either rather similar or rather 

dissimilar, with a dearth of intermediate cases. It seemed that a real difference between what 

we might call dialects and what we might call languages had been found. The paper drew 

upon word lists for 451 doculects from 15 groups of related languages in the ASJP database 

(Wichmann et al. 2018). It was shown that the differences between the word lists, when 

displayed in density plots (essentially equivalent to smoothened histograms), tended to show 

bimodal distributions (double humps reminiscent of a dromedary camel). The ‘valley’ or 

near-gap in the distributions occurred around a similarity of 0.51 on a scale from 0 to 1, using

the normalized Levenshtein distance (for the definition of which look further on in the 

present paper). Using a dating technique from Holman et al. (2011), this similarity could be 

translated into a time separation of around 1350 ± 300 years. Not only did this cut-off emerge

through an objective procedure, it also yielded distinctions which could be described by the 

dialect vs. language labels as they might plausibly be applied.

A potential issue with Wichmann (2019) is that it relied on samples of language 

varieties that could have introduced a bias. The ASJP database contains data from many 

linguistic surveys, and these tend to be directed at the documentation of what is perceived to 

be ‘dialects’ of some ‘language’. Often surveys focus on a particular geographical area. 

Survey data, however, is only included on an opportunistic basis, whereas the main aim of the

database is to cover as many different ISO-639-3 entities (‘languages’) as possible. So, the 

database mainly contains ‘language’ data, with some additional ‘dialect’ data, thus perhaps 

inadvertently being biased towards a ‘language/dialect’ distinction. Some resampling was 

carried out towards an attempt to control for such a bias, but the limitations of this attempt 

were acknowledged. 
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Here we aim at a replication of the general findings of Wichmann (2019), using a 

different type of initial, unbiased sample, albeit one which is smaller. A survey aimed at 

simply covering whatever variety is spoken in the cells of a geographic grid should be 

unbiased, whereas a survey aimed at ‘dialects’ (close varieties) of a ‘language’ might miss 

intermediate varieties (less close varieties) between ‘languages’, something which might be 

responsible for the valleys in the density plots seen in the earlier study. The European part of 

the database described in the next section allows us to work with a grid, removing biases 

from the sample.

Introducing a grid-based sample is not the only motivation for moving to data other 

than those employed by Wichmann (2019)—the ASJP database would also allow for drawing

such a sample.1 Additionally, we want to see whether the observations of Wichmann (2019) 

generalize using data that are very different in nature. The ASJP data comes in transcriptions 

that merge many phonological distinctions, whereas the data we will employ here comes in 

maximally fine-grained phonetic transcriptions.

2. Materials and methods

2.1 Dataset

We use the Sound Comparisons database (Heggarty et al. 2019), which contains around 

50,000 narrow transcriptions of words for dozens of cognates in over 600 language varieties2 

around the world.3

Since we want to reduce sample biases by controlling for geographical coverage, we 

are interested in being able to sample from a grid which is as fine-grained as possible, while, 

at the same time, having as few empty cells as possible. To illustrate why this is important, 

consider the following example of the nature of a sample not having this kind of geographical

control. The ASJP database (Wichmann et al. 2018) includes 47 word lists from a linguistic 

survey of northern Pakistan (Bakstrom and Radloff 1992). Of these, 26 represent varieties of 

1 ASJP has a good geographical coverage. But it needs to be mentioned that metadata relating to locations are 
inconsistent and therefore not very adequate. Most often, varieties of a language as defined by an ISO 639-3 
code are assigned the same geographical coordinates, but sometimes varieties are assigned different locations.
2 After post processing we ended up with 247 varieties.
3 The data is freely available from https://soundcomparisons.com/. To download it, the reader has to select the 
Europe dataset and, for each cognate set, download the csv file. The process needs to be repeated for the 
individual datasets (Germanic, Celtic, Slavic, Romance). Along with this paper we only share the processed 
data.
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Shina [scl]. Thus, for no particular reason other than the availability of Bakstrom and Radloff

(1992), these data on Shina dialects would play an important role in a study of how to 

distinguish languages and dialects drawing upon a sample taking from ASJP and defined 

genealogically such as to include Indo-Aryan languages or defined geographically such as to 

include northern Pakistan. Sampling from a geographical grid, however, would remove the 

bias, but only if cells are filled at least to a reasonable extent. Having a grid-based sample 

with a lot of empty cells obviously defies the purpose of a grid-based sample. For instance, 

we may end up mostly having language varieties from northern Pakistan in our sample if, 

say, we sampled from an area including Pakistan, but (1) were largely limited to data from 

Bakstrom and Radloff (1992) and (2) allowed for a lot of empty cells. 

The Sound Comparisons database lends itself to a grid-based approach. According to 

Heggarty et al. (2019: 281), “[s]ampling of language varieties has been determined by two 

main criteria: to be representative of linguistic and dialectal diversity, and urgency in the face

of the imminent extinction that hangs over much of that diversity. The complex balance 

between these criteria often overrides the default of sampling evenly through geographical 

space.” Even if, as is admitted, sampling is not geographically even, we can control for this 

by sampling from the sample. Since Europe is the most densely covered area in the database, 

we have selected an area within Europe. Figure 1 shows the locations of all the European 

language varieties of the database. Further on (section 2.4 and Figure 2) we describe how we 

extract a Central European grid from the area for the purpose of the present investigation.

The data across language varieties need to be comparable, so from the word lists we 

select only 18 items, namely the items that are attested across all the Celtic, Germanic, 

Romance, and Slavic languages. The items in question are: ‘eight’, ‘five’, ‘four’, ‘full’, 

‘grain’, ‘hundred’, ‘name’, ‘nine’, ‘one’, ‘salt’, ‘seven’, ‘six’, ‘ten’, ‘three’, ‘tongue’, ‘two’, 

‘wind’, and ‘young’.4 If we were to measure the similarity of different varieties using 

different numbers of cognates by availability, we would be introducing a confounding factor. 

While only 18 cognates may sound like too little, Section 3.2 presents some robustness 

checks showing that our results are likely not due to having too few cognates.

4 The reason why there are mostly numerals in the dataset is that the Sound Comparisons dataset is based on 
independent lists of cognates for each Indo-European subgroup. Numerals seem to be stable across all of the 
four included subgroups.
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Fig. 1. Location of language varieties represented in the Sound Comparisons database.

Likely due to the fact that several transcribers contributed to Sound Comparisons, the 

phonetic transcriptions contain some inconsistencies. These concern the use of different 

diacritics to mark the same phonetic process, different unicode characters for what is 

arguably the same phone or diacritic, and the use of some non-standard diacritics. We did our

best to normalize the transcriptions by (1) unifying different UTF-8 characters, (2) using the 

same diacritic systematically, and (3) removing diacritics used for features that were not 

marked consistently.5 

The types of changes we made to phonetic strings include the following:6 

 We removed all non-IPA-like symbols like: []()+_ , etc.

5 For example, stress was only marked for a handful of dialects.
6 The full list of changes can be found in the supplementary materials. These are available at 
https://doi.org/10.5281/zenodo.7752997 .
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 We transformed single unicode characters for symbols like <ä> to combinations like 

<a> + <¨>, which are visually indistinguishable, but different for the computer. The 

reason is that some annotators used the single symbol, while others had picked the 

two-symbol combination.

 We removed stress marks on vowels (e.g. <í>) because it is unclear what they mean, 

and these are non-systematic throughout the dataset

 We converted non-standard symbols like <Ɂ> (U+0241) or <g> (U+67) to their 

closest IPA symbol: <ʔ> (U+0294) and <ɡ> (U+0261).

Some caveats are in order. Certain symbols are normally not used in IPA, and were 

only present in a handful of transcriptions, like φ and superscript ᶴ. It is difficult to know 

exactly what the transcriber meant by these, but we tried to approximate their most likely 

equivalent (in these cases ɸ and ʃ). Other cases were even more ambiguous, like the use of ȿ, 

which normally represents sʷ in African linguistics, but which we think was meant to 

represent ʂ. However, cases like these were very rare, with only a dozen occurrences, and 

should not make a noticeable impact on our dataset.7

This process left us with a total of 1529 different symbols. The reason for this very 

large number is twofold. First, we are counting long and short versions of the same phoneme 

as different symbols. Secondly, the transcriptions vary in degree of precision, with some 

transcriptions using three or four diacritics on the same symbol.

One additional step taken was to randomly select only one transcription per dialect. In

a small number of cases, the dataset records several alternative cognates for a variety.8 Since 

this is not consistent, and only happens sporadically, we decided to keep only one form per 

variety.

In order to be able to calculate phonetic distances between words and thus dialects, 

we built a feature matrix including all symbols in our dataset. We use the Panphon 

phonological feature matrix as a starting point (Mortensen et al. 2016) and added several 

additional features to be able to distinguish all contrasts marked in the dataset (extra short, 

half long, centralized, retracted, advanced, lowered, raised, non-audible and mid-central). 

While, strictly speaking, we are not capturing phonological contrasts but rather phonetic 

7 See the supplementary materials for the full list of changes.
8 A couple of entries also list non-cognates. We removed these.
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ones, we use an approach based on phonological-like features to capture similarities between 

sounds.

2.2 Distance metrics

Distances between pairs of lexical items form the basis of our computation of phonetic 

distances between language varieties in the dataset. In order to measure the phonetic distance 

between strings, we need to calculate a phoneme substitution cost corresponding to an 

assumed distance between two different phonemes. In the literature, there are two ways of 

doing this. The simplest approach is to assume a uniform cost of 1, independently of which 

segments we are comparing. For example, the substitution cost of [t], [d] and [x] would be 1 

for any transition among the three different sounds. Alternatively, we could claim that [t] is 

more similar to [d] than it is to [x], which should incur different substitution costs, or that 

vowels are more similar to each other than they are to consonants because they have more 

features in common, and that their substitution costs should thus reflect this difference in 

similarity. There are multiple possibilities for measuring phonological distances of phonemes 

(Beniamine 2017, Beniamine and Guzmán Naranjo 2021), as well as various 

implementations (see Mortensen et al. 2016, Dellert and Jäger 2017, List 2017, Kilani 2020), 

and as far as we are aware, there does not seem to be an agreed-upon choice in the literature. 

In this paper we used a binary distance metric based on a feature description.9 

Given a phoneme substitution cost (whether 1 or other), we can use the normalized 

Levenshtein distance to calculate the distance between translational equivalents in different 

varieties. The Levenshtein distance (also called edit distance) counts the number of 

operations required to transform string s into string t. The possible operations are deletion, 

insertion and substitution, and each one has a cost assigned to them. We assign a cost of 1 to 

insertion and deletion, and use the phoneme substitution costs for substitution. The 

normalization, which is quite commonly used, consists in dividing the distance by the length 

of the longest word, resulting in a number between 0 and 1.

For example, the word for five is recorded in Stavanger as [fɛm] and in Swedish as 

[fɛ̃m]. The raw edit distance between the two words would be 1 if we counted [ɛ] and [ɛ̃] as 

completely different segments and assign a substitution cost of 1. However, we have a 

9 One potential downside of using a binary distance metric is that it cannot distinguish between features which 
are off and features which do not apply to a given phoneme usually marked as 0 in a phonological feature 
matrix.
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substitution cost of 0.17 between nasal and non-nasal vowels, meaning that the edit distance 

is 0.17, which we divide by 3 (the maximum length of either string) to get 0.06 (rounding the 

value).

Recall that our data consists of phonetically transcribed realizations for a series of 

words in many variants. For example, we have the realization of words like four and five in 

Faroese ([ˈfʊ̆iɹ̝ä], [fɪmˑ]), Stavanger ([ˈfiːʁə], [fɛm]), Swedish ([ˈfyːɾä], [fɛ̃m]), etc. For each 

word we can calculate the distance to its translational equivalent in another language variety, 

as shown in Tables 1-2. Table 1 shows the Levenshtein distance using no phoneme 

substitution costs (all substitution costs = 1), and Table shows the distance using costs.

Table 1. Distances among selected words in three Scandinavian language varieties using 

Levenshtein Distance without phoneme substitution costs

four five

Faroese

[ˈfʊ̆iɹ̝ä]

Stavanger

[ˈfiːʁə]

Swedish

[ˈfyːɾä]

Faroese

[fɪmˑ]

Stavanger

[fɛm]

Swedish

[fɛ̃m]

Faroese 0 0.8 0.6 0 0.67 0.67

Stavanger 0.8 0 0.75 0.67 0 0.33

Swedish 0.6 0.75 0 0.67 0.33 0

Table 2. Distances among selected words in three Scandinavian language varieties using 

Levenshtein Distance with segment substitution costs
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four five

Faroese

[ˈfʊ̆iɹ̝ä]

Stavanger

[ˈfiːʁə]

Swedish

[ˈfyːɾä]

Faroese

[fɪmˑ]

Stavanger

[fɛm]

Swedish

[fɛ̃m]

Faroese 0 0.48 0.39 0 0.1 0.14

Stavanger 0.48 0 0.35 0.1 0 0.06

Swedish 0.39 0.35 0 0.14 0.06 0

Given the kind of information on word distances illustrated in Table 2, there are several 

alternatives for calculating the overall distance between languages. The most straightforward 

is to take the mean distance across all words for each pair of languages. For the example in 

Table 2, the overall distance between Faroese and Stavanger would be 0.29, between Faroese 

and Swedish 0.265, and the distance between Swedish and Stavanger would be 0.205. If we 

assume substitution costs of 1 for all phonemes, as in Table 1, the process would be 

analogous.

In this paper we explore both the approach using uniform substitution costs and the 

one using feature-based substitution costs. In the following section we also compare our 

method to two additional methods described in the literature.

2.3 Validation of distances

Before employing the distances in further analyses it should be decided which measure more 

adequately represents distances among speech varieties. We employ two strategies for 

comparing the performance of the distance measures.

The first evaluation strategy is to compare linguistic distances to geographical 

distances. It is a standard expectation in dialectometry since the work of Séguy (1971) that 

geographical distances among language varieties are correlated with their linguistic distances 

(see further references in Holman et al. 2007:395). So, among alternative linguistic distances,

the one that leads to a better congruence with geography would appear to be more adequate. 

Here we use the Great Circle Distance (GCD) and coordinates as given in the Sound 

Comparisons database. Using the GCD rather than some more sophisticated measure of travel
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distance is justified by a study that introduces such a measure, but nevertheless concludes that

“for a correlational study limited to distances up to 2000 km the GCD will do” (Wichmann 

and Hammarström 2020:5). The vast majority of distances computed in the present study are 

smaller than 2000 km , and none exceeds 2600 km. Linguistic and geographical distance 

matrices are compared through CADM (congruence among distance matrices), as 

implemented in the CADM.global() function of the R package ape (Paradis and Schliep 2019;

see Legendre and Lapointe 2004 for an introduction to CADM). We report on Kendall’s 

coefficient (W). 

The second evaluation strategy consists in comparing trees based on different 

linguistic distances with some yardstick to see which tree is more similar to the yardstick. 

The yardstick used here is the classification of the lects according to Glottolog 

(Hammarström et al. 2021). Creating a Glottolog tree for the Sound Comparisons doculects 

was done as follows. First we assigned ISO 639-3 codes to each lect. In this step we let 

ourselves be guided by links to Glottolog and/or Wikipedia that are given on the page for 

nearly every lect in the online Sound Comparisons database.10 Next, we prepared a simple 

text file with one line per lect, containing its name and its Glottolog classification as 

expressed by decreasingly inclusive groups from the family level to the ISO 639-3 code level.

The file was submitted to Greenhill’s treemaker tool (Greenhill 2018) in order to produce a 

tree in newick format. Using a variety of tree comparison methods implemented in the R 

libraries TreeDist (Smith 2020) and Quartet (Smith 2019), this could then be compared to 

trees based on our weighted and unweighted Levenshtein distances (henceforth LD-W and 

LD-UW) and produced in MEGA (Kumar et al. 2018) using the popular Neighbor-Joining 

algorithm (Saitou and Nei 1987).

Two additional sets of distances were tested. The first was computed by first 

transforming the phonetic transcriptions into ASJPcode (Brown et al. 2013) and then 

performing an unweighted Levenshtein distance. The second approach is to use LingPy's 

(List 2022) distance metric. We use the pw_align() function, with global alignments, to 

produce a phonological distance, using default settings. This function implements the 

distance calculation proposed by Dawney et al. (2008). The results of comparing linguistic 

and geographical distances are shown in Table 3. They show congruences which are better 

10 For 4 lects we could not assign ISO 639-3 codes. They are listed as follows in the source: ‘Italy: N. in S.: 
Picerno’, ‘Italy: N. in S.: Tito’, ‘Italy: N. in S.: San Fratello’, ‘Italy: N. in S.: Novara’. Picerno and Tito are 
Gallo-Italic varieties of the Basilicata region of Southern Italy, and San Fratello and Novara are Gallo-Italic 
varieties of Sicily. Neither the Basilicata nor the Sicilian varieties seem to be taken into account in Glottolog.
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for the weighted distance, but not by much. Overall, the ASJPcode and Lingpy produce 

slightly worse fits with the geographic distance.

Table 3. Kendall’s W between linguistic and geographical distances for all distance matrices. 

Best score in bold.

distance LD-W LD-UW Lingpy ASJP

Kendall W 0.70 0.69 0.68 0.66

Results of two tree comparison metrics are shown in Table 4. The Steel-Penny variant

of the quartet distance is a normalized quartet distance computed as the quartet distance 

divided by the sum of the quartet distance and the quartet similarity (or total number of 

quartets). It runs in the [0-1] range. The Robinson-Foulds distance counts the absolute 

number of nodes differing between two trees. The quartet distance points to LD-UW as 

performing best, but with LD-W as a very close contender. Because of noise due to 

sparseness of data and a reference tree which is not fully resolved, we do not invest 

confidence in the ability of the test to reliably distinguish LD-UW and LD-W. It does seem 

clear, however, that Lingpy and ASJPcode transcriptions perform less well. As for the 

Robinson-Foulds distance, which is less fine-grained than the quartet distance, the result is a 

tie throughout. In sum, it is hard to exclude either LD-W or LD-UW from further analysis, 

whereas it seems safer to exclude Lingpy and ASJP.

Table 4. Distances between Neighbor-Joining trees using LD-W vs. LD-UW according to 

two tree comparison metrics. Best scores in bold.

LD-W LD-UW Lingpy ASJP R package metric

0.163 0.162 0.172 0.168 Quartet (Smith 2019, 

Sand et al. 2014)

Steel & Penny 

(1993)

250 250 250 250 TreeDist (Smith 2020) Robinson and 

Foulds (1981)
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The two Neighbor-Joining trees and the Glottolog-based tree are supplied as 

Supplementary Materials.

2.4 Grid sampling

In order to determine the design of a grid we were interested in (1) maximizing the area 

covered as well as (2) the number of grid cells (i.e. minimizing their size), while (3) 

minimizing the number of empty cells. Further specifications of these criteria and their 

respective rankings would be needed for a unique solution to the optimization problem, but 

such specifications would be arbitrary, so we settled on an ad hoc, experimental solution, 

shown in Figure 2. The grid consists in 45 cells of size 3° 3°, of which just six are empty.⨯

Fig. 2. Geographical grid used for sampling. Solid lines show the bounds and dotted lines the 

grid cells.
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Given the grid in Figure 2, we can produce a balanced sample of language varieties by 

choosing one random location per grid cell. This sampling procedure may be repeated with 

replacement several times over in order to capture the variation in the data.

3. Results

3.1 Density plots

Figures 3 and 4 show density plots of distances among language varieties using the grid 

sampling method described in the ‘Materials and methods’ section. Figure 3 represents 

distances based on phonological substitution costs and Figure 4 distances based on uniform 

substitution costs.

Figure 3. Density plot of pairwise distances for 20 grid samples of language varieties using 

the normalized Levenshtein distance with substitution costs.
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Figure 4. Density plot of pairwise distances for 20 grid samples of language varieties using 

the normalized Levenshtein distance without substitution costs.

At first sight, it is not obvious that there is a valley separating two distributions in 

either plot. What we see is a large peak at 0.6 in Figure 3 and at 0.9 in Figure 4, both 

preceded by a relatively flat section. However, we do observe small dips at around 0.5 in 

Figure 3 and around 0.8 in Figure 4.

We can nonetheless ask whether these distributions reflect an underlying single 

distribution or a mixture of two distributions. To address this question we fitted two Bayesian

models using Stan (Carpenter et al. 2017) and BRMS (Bürkner 2017) on one of the samples 

from the dataset (as described above). One model (M1) is composed of one Beta family, and 

another model (M2) has a mixture of two Beta families for each distribution. Importantly, we 

could not fit a model with a mixture of three families for either distribution. The models 

failed to converge and there were label-switching issues.

We want to compare whether a single beta family or a mixture of two beta families 

captures the data better. We first do a visual inspection using posterior predictive checks on 

both models (Gabry et al. 2019). This consists of generating random data from the posterior 
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distributions obtained in the model fit, and comparing the density distribution of the obtained 

random data to the density distribution of the original data. If a model fits the original data 

well, the generated data should have a density distribution similar to the original one. Figures 

5 and 6 show the posterior predictive checks for M1 and M2, respectively, for the distance 

using phoneme substitution costs.

Figure 5. Posterior predictive checks for models M1 and M2 with phoneme substitution costs 

(LD-W) and without phoneme substitution cost (LD-UW). Y is the density of the sample data

used on the model, Yrep is the density of the predicted data from the model.
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In Figure 5, the dark blue line shows the density distribution of the data sample used 

to fit the models, while the multiple light blue lines show the random samples from the 

posterior distribution. In this case it is clear that with both distance metrics, the M2 model 

with a mixture of two Beta families fit the data much better than the model with a single Beta

family.

The second method we explore in order to evaluate model fit is (approximate) leave-

one-out (LOO) cross-validation (Vehtari et al. 2017). In LOO11 we remove one observation 

from the dataset, fit the model, try to predict that left-out observation, and then evaluate how 

successful the model was in making the right prediction. We repeat this process for all 

observations. Due to computational constraints, we employ an efficient approximation using 

Pareto-smoothed importance sampling (see Vehtari et al. 2017 for details). To evaluate model

performance, we use the expected log predictive density (ELPD), which captures how much 

probability density a model assigns to the real value of the predicted observation.12

Absolute ELPD values are not very informative in our case, but the difference in 

ELPD between two models is. Tables 5 and 6 show the ELPD difference between the best 

model (M2) and the second-best model (M1), as well as the Standard Error of the difference. 

The best model is assigned values of 0, serving as a baseline. In both cases, the model using a

mixture of two distributions (M2) performed considerably better than the model with a single 

distribution. Interestingly, the difference is much clearer when we take substitution costs into 

consideration.

Table 5. ELPD difference between M1 and M2 on a grid-sample of the Levenshtein distances

with variable phoneme substitution costs.

ELDP difference SE difference

M2 0 0

M1 -271 21.7

11 This approach to model evaluation is an alternative to the more traditional Bayes Factor, and it is similar in 
principle to (W)AIC. The drawback of Bayes Factor is that it can be extremely sensitive to prior choice, and in 
some cases overconfident with misspecified models (Oelrich et al. 2020). In comparison to WAIC, LOO has 
been shown to be less error-prone, and more accurate overall (Vehtari et al. 2017).
12 The ELPD can be thought of as a version of MSE or MRSE, but it takes into account the posterior 
uncertainty in the predictions.
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Table 6.  ELPD difference between M1 and M2 on a grid-sample of the Levenshtein 

distances with uniform costs.

ELPD difference SE difference

M2 0 0

M1 -134.2 15

Tables 5 and 6 clearly show that M2 is much better than M1 in both cases, with and 

without substitution costs, although the difference is larger if we take substitution costs into 

consideration. This result suggests that using variable phoneme substitution costs makes the 

bimodal nature of the distribution more salient than when no (or uniform) costs are used.

Because we are estimating the parameters of the distributions, we can also try to 

visualize what the underlying distributions would be, if they were independent. For reasons 

of space we only show this for the distances using phoneme substitution costs, but a similar 

behavior is found for the regular Levenshtein distances. Figure 6 shows posterior samples 

from these estimated distributions, as well as the observed grid-sample used to fit the model 

M2. We can see that the distribution for shorter distances (or the distribution of dialects) is 

much wider than the distribution for longer distances, which is concentrated at 0.6 and has 

very little spread. We also observe that while there is some overlap (the mean intersection of 

the posteriors is at 0.536, with the whole posterior lying between 0.527 and 0.547, and the 

mean posterior overlap of the distributions is 0.07), a large portion of the distributions does 

not overlap and is clearly differentiated. 
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Figure 6. Observed distribution of grid-sample (distances using substitution costs) in green, 

and the two theoretical distributions estimated by the model M2 in red and blue.

From this result it is easy to see that while there is no clear cut-off point for the 

distance between two variants giving us certainty that we are dealing with either a pair of 

dialects or a pair of languages, it is still possible to observe an underlying categorical 

distinction between dialects and languages.

3.2 Robustness checks

One potential issue with our approach is the relatively small number of cognates in question. 

It is theoretically possible that the distributions we observe arise due to noise, and that it 

would even out if we were to include more words. To test this, we compare the distance 

matrix obtained using different numbers of words for smaller datasets for which we have 

more cognates. We focus on two subsets of our dataset: Romance doculects and Germanic 

doculects. For the Romance doculect dataset we have a total of 128 words and 38 doculects, 

and for Germanic 106 words and 58 doculects.
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The setup of the experiment is as follows. We randomly sample N words from one of 

the datasets 100 times and then calculate the distance matrix using weighted Levenshtein 

distances. Subsequently we calculate the Steel-Penny distance from the resulting distance to 

the Glottolog tree for the relevant doculects. We repeat this process from N=1 to N=50.

Figure 7. Distribution of Steel-Penny distances for different numbers of randomly sampled 

words for Romance doculects. N=18 is shaded in dark blue.

Figure 7 shows the results for the Romance doculects and Figure 8 the results for the 

Germanic doculects. We observe that the distance has relatively high variance for all N, and 

that it can vary considerably depending on the sampled words. The mean distance, however, 

stabilizes at around 30 sampled words,13 and the mean distance for N=18 is very close to that 

mean. For the Germanic doculects we observe a very similar picture. The mean Steel-Penny 

distance stabilizes at more or less 18 words, and does not really improve after that. One 

13 It is worth noting that in the original paper for ASJP the authors reach a similar conclusion.
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feature of the Germanic lects is the large variability in distances depending on the random 

sample. This is likely due to contact effects throwing off the distance calculation.

Overall we observe that while having only 18 words in the whole dataset might be a 

source of some noise, and while we would expect results to improve with more words, it does

not appear that the bimodal distribution is an artifact of having too few words.

Figure 8. Distribution of Steel Penny distance for different numbers of randomly sampled 

words for Germanic doculects. N=18 is shaded in dark blue.

4. Discussion

In the preceding sections we hope to have established that pairs of language varieties tend to 

have relatively small or relatively large differences, with a shortage of in-between cases. We 

have suggested that the traditional label ‘dialects’ might be appropriate for the closer varieties

and ‘language’ for the more distant ones. Although nothing dictates that we have to leave the 

comfort zone of abstract, statistical reasoning, it is tempting, of course, to ask how the 

findings resonate with practical aspects of language classification. 
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In this discussion we are going to address the following questions, where the first 

refers to the empirical cut-off point of 0.537 (0.527-0.547), which is the mean point at which 

the two component distributions in our mixture model intersect (see section 3.1 and Figure 

8):

 Viewed as a non-negotiable ‘iron curtain’, how would an application of this cut-off 

compare with the separation of speech variants into dialects and languages implied by

the ISO 639-3 standard?

 Is there some other classification procedure using our lexical-phonological distances 

which might produce a result closer to the ISO 639-3 standard?

We now go on to address these questions, but urge the reader to keep in mind that we are not 

viewing the ISO 639-3 as a gold standard against which to judge the quality of our results 

that were based on analyses of distance distributions14—rather, we are simply curious to see 

how they relate to one another.

The simplest way to compare the ISO 639-3 code classification to the classification 

obtained using the 0.527-0.547 Levenshtein distance cut-off is to count the intersection of 

lects that belong to same or different languages according to ISO 639-3 and lects that have 

distances greater than 0.547 or smaller than 0.527 or are in the ‘gray zone’ of 0.527-0.547. 

These counts are presented in Table 7.

Table 7. Numerical comparison of the number of pairs of lects in the six categories that 

emerge when crossing the ISO 639-3 classification with a classification according to a 

distance cut-off of 0.537 ± 0.01.

ISO 639-3 \ distance (D) D < 0.527 0.527 ≤ D ≤ 0.547 D > 0.547

Same 732 2 1

Different 7074 1242 20,352

14 For the purposes of these explorations we only use the distances that take phoneme substitution costs into 
account.
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The distribution of numbers in Table 7 clearly shows that the distance cut-off is 

comparatively speaking a lumper and the ISO 639-3 standard comparatively speaking a 

splitter when it comes to grouping together lects in what we may conveniently, for the 

purpose of the present discussion, call ‘languages’. There is only one pair which, according to

the distance classification, consists of two different languages whereas it consists of different 

dialects according to the ISO classification. This pair is Occitan [oci]: Auverngat dialect of 

the Neschers region - Gascon dialect of the Val d’Aran. And only two pairs are in the gray 

zone with regard to distance but ‘same’ with regards to ISO-code. On the other hand, 90.6% 

of the pairs that would be considered dialects by the distance criterion (D < 0.527) are 

different languages according to the ISO-criterion. In order to explore the limits of what 

would be considered same languages according to the distance criterion, Table 8 offers the 

raw data for three pairs of lects that are just below the 0.527 limit.
 

Table 8. Most distant ‘dialects’ according to the distance criterion

ISO 396-3 lav pol gle eng mwl src

name 

language

Latvian Polish Irish English Catalan Sardinian

name lect Latvian: 

Std

Polish: 

Mazovian

Cork: 

Ballymake

ery

Rossend

ale

Catalan Sardinian 

N.: Monti

one vɪj̆ɛnts jɛd̝an eːn wɒn ʔuˑn u̞ːnʊ

two di̽ˑvi̽ dva doː tʰʊuˑ do̞ˑs duˑɔ̟ˑzɔ̟

three tɾiːs tʂɪ tʰɾʲiː θɾɪiˑ t ̪h ɾə̟ː s tɘ̆ɾɛ ̝ː zɛ

four tʃɛtɾɪ ʂtɘɾ̟ɪ kʲʰæhʊɹ ̝ fo̞ˑə˞ kʰwɐtɾə ba̠ttəɾɔ̟

five pĭ̽jɛt̝sɪ pç̟eɲ̞tɕ kʰuˑɪk̯ʲ fäˑɪv si ̞ˑŋkx kʰiˑmbɛ

six sɛʃɪ sɛɕ̠tɕ ʃeː sɪks siˑs sɛ̝ː zɛ
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seven sɛptɘɲ̟ɪ ɕɘd̟ɘm̟ ʃaxt sɛvə̆n sɛ̞ː t ̪h sɛ ̝ˑ ttɛ

eight hɑ̟stuɔ̟nɪ wɔɕɘm̟ ʊ̞xt ɛˑɪt voˑit̠ ̪h ɔˑttɔ

nine dɛvɘɲ̟ɪ dʑɛvɪɲtɕ nˠeː näˑɪn nʌːu̞ nɔːɛ

ten dɛsmɘt̟ dʑeɕ̞ɪ̃ɲtɕ dɛ̝ tʰɛn dɛ̞ː u̞ dɛ̝ː ɣ̞ɛ

hundred sɪmts stɔ kʲʰiɐd̪ ʊndɹəd se̞ˑ nt ̪h kʰɪːntu

tongue mɛːɫɛ ̠ jeɰ̞̃zɪk tʰaŋɘ tʰɒŋɡ ʎe̞ˑ ŋɡo liˑmba

name vɑ̟ːɾts imɲɛ̝̃ anʲɪmʲ ne̞ː m nɔ̞ːm nɔ̃ːmɛ̃nɛ̃

wind vɛːĭʃ ʑɛt̝ʂ fʲad̪ wɪnd ve̞ː nt ̪h ɪːntʰʊ

salt sɑ̟ːɫs sʊ̟l salˠən sɒɫt sa̠ːɫ sa̠ːlɛ

grain zɘr̟nɘs̟ ʑæɾka ɡɹɑːn kʰɔːɹn ɡɾaː ɹa̝ːnʊ

young ja̠ɔ̆nts mwɔdɪ oːɡ jʊŋɡ dʒɔ̝ːvə̠ dʒɔːvɐnʊ̃

full piːɫnɐ̞ pɛw̠na lˠɑːn fʊɫ pɫɜ̠ː pʰjeːnʊ

While perhaps initially surprising, it is understandable that pairs such as the ones in 

Table 8 will occur given the limited set of words available and some potential reasons for 

similarity out of the ordinary relating to contact and shared retentions. The particular Polish 

variant is the one among several variants of Polish which is geographically closest to Latvia; 

Irish is in contact with English; Catalan and Sardinian may be united through Romance 

retentions.

Other illustrative cases are offered in Table 9. The first pair (Irish lects) is the one 

which has the smallest distance of all pairs in the data. In contrast to the cases in Table 8, we 

here see a pair of lects where the members are clearly extremely similar, with only a handful 

of phonetic differences in a couple of lexical items. The second pair represents a middle-of-

the road case. It has a distance of 0.41, which lies very close to the mean of the dialect 

distribution. According to the ISO-codes, it would be classified as two different languages, 
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but using our method they are grouped together. Finally, the third pair is the pair having the 

greatest distance (0.556) among all the pairs which, according to ISO 396-3, should be 

classified as dialects.

Table 9. Additional examples of dialect-language distinctions. (1) the two closest varieties in 

the dataset, (2) two dialects close to the mean of the dialect distribution, (3) two lects which, 

according to ISO 396-3 should be dialects, but have the greatest distance among pairs 

representing one and the same ISO-code.

ISO 396-3 gle gle wep gsw oci oci

name 

language

Irish Irish Wesphalie

n

Allemani

c

Ocitanian Ocitanian

name lect Gweedore

-Carrick

Tory Island Westphali

a: 

Münsterla

nd

Liecht.: 

Oberland

Gascon: 

Val 

d’Aran

Auvergne: 

Neschers

one eːn eːn ḛɪnə ʔäːs yˑũŋ vʌ̃ˑ

two dɑː dɑː tβ̠e̞ːə tsvoː dyːs ̟ du

three tʰri̝ː tʰri̝ː dɾeɪə dryː tɾ̪eːs ̟ tʰχi

four kʲʰɛhəɹ ̝ kʲʰæhæɹ ̝ fe̞ː ɾə fiːɛ kwa̠ˑte kʰɐtχʌ̆

five kʰuɪkʲ kʰuˑɪc fiːʋə fyːf si̟ˑŋ ʃĩˑ

six ʃeː ʃeː sɛsə sɪks̞ si̟ˑes̠ ̟ ʃei

seven ʃaxt ʃaxt siˑəm siˑb̥ɐ sɛ̟ːt˺ sɪ

eight ɑxt ɑxt ʔaxt ʔäˑχt uweit ̪h v̥ɘˑ

nine nˠiː nˠiː niəɡn̩ nyː na̠ˑu nɘˑ
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ten dʒæjʰ dʒæj ta̠ɪn tsehɐ det̞s ̟ ɟɪˑ

hundred kʲʰɛːd̥̪ kʲʰɛːd̥̪ hʊnɔt ̠h hundətʰː se̟ˑn sɛ̃ˑ

tongue tʃaŋi tʃaŋi t ̠h ʊŋən tsu̞ŋˑa̠ leˑŋɡwʌ iʎiŋɡɔ̝

name aɲɪmʲ aɲɪmʲ næːm namä no̞ˑm nuˑ

wind fʲaˑd̪ fʲad̪ viːntʰ vin̞tʰ beˑnt vɐ̃ˑ

salt salˠən salˠən sɔltʰ säːlts sa̠̟ˑuˑ soˑ

grain ɡɹaˑɲ ɡɹan kʰœ̝ɾn̩ kʰɒʀn ɡɾaː ɡχoˑ

young ɑːɡ ɑːɡ jʊŋɡ̥ jʊŋ dʒŭwen̠ dʰʊinə̆

full lˠɛːn lˠæːn fʊl fol pleˑŋ plˠə

Regardless of how to explain cases such as those in Table 8, it is clear that a simple 

‘one size fits all’ approach according to which varieties below some cut-off are dialects of 

one another and varieties above some cut-off are different languages is not tenable. For 

instance, the ‘Greater Poland’ variant of Polish has a distance to Standard Latvian of 0.5426, 

exceeding the cut-off, while its distance to Mazovian Polish is 0.2268. Thus, there is a 

conflict between on the one hand the ‘same language’ status of Mazovian Polish-Standard 

Latvian and Mazovian Polish-Greater Poland Polish and on the other hand the ‘different 

language’ status of Standard Latvian-Greater Poland Polish. The way to avoid such conflicts 

is to define clusters rather than pairs when applying a language vs. dialect criterion. We now 

turn to this.

There are different approaches to clusterization. For any approach we will want to 

compare the clusters obtained with clusters as defined by the ISO 639-3 standard. We do this 

using the Normalized Information Distance (NID),15 which is an entropy-based measure 

equal to 1 – the normalized mutual information between a set of clusters. It produces values 

in the 0 to 1 range.16

15 Some alternatives are the split/join metric, Rand Index or Variation of Information index (see Meilă 2007 for
a discussion of different metrics).
16 The NID() function of the aricode R package (Chiquet et al. 2020) shows how this metric is defined .
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One approach to building clusters from the distance matrix is to use a hierarchical 

clustering method and then cut the tree at some height.17 We can choose the 0.537 cut-off 

point which emerged from our data as the height at which to cut the tree. We expect that two 

lects with a distance below this point will likely belong to the first component (the ‘dialect 

component’) in the mixture of two distributions, and that lects with distances above this point

will likely belong to the second component (the ‘language component’). This approach leads 

to 13 different clusters. It is already clear from a comparison of the corresponding number of 

clusters in the ISO 639-3 classification, which is 72, that the latter is more inclusive and 

rather different. The relatively high NID value of 0.427 is a manifestation of the differences. 

An example of one of the concrete differences that emerge through inspection is the treatment

of several Romance varieties that are merged in the distance-based clusterization but 

distinguished in the ISO 639-3-defined clusters.

We could alternatively aim at a better approximation to the ISO 639-3 classification, 

minimizing the NID, while still using tree-cutting with a certain cut-off. Using an 

optimization technique to achieve this goal results in an optimal cut-off point at 0.327 and a 

NID of 0.121. Using this cut-off point already gets us very close to the ISO 639-3 

classification.

These tree-based approaches assume that all clusters must be cut at the same height, 

and therefore require us to pre-specify a height at which to cut the tree. An alternative to 

building clusters which does not rely on cut-off points (or at least not to the same extent), is 

the following, which we might call a nearest neighbor approach. For each lect L0, we find its 

nearest neighbor L1, i.e. the lect with the smallest distance to it, and add L1 to the cluster of 

L0, C0. We repeat this process for L1 and find its nearest neighbor L2 and add this to C0. The 

next nearest neighbors are added until we reach a loop, i.e. until we find an Ln already in C0. 

This process is repeated for all lects, and then all clusters sharing one or more lects are joined

together. This process results in 55 clusters when continued until it contains all lects. While 

this method has the advantage of being agnostic to cut-off points, it has the drawback that it 

necessarily groups ‘isolated’ lects together with some other lect(s). If, for example, a single 

variant of Basque was included in our dataset, it would necessarily end up together with one 

or more other lects in some cluster. To avoid this, one could again resort to a distance cut-off,

stipulating a limit on the distance between nearest neighbors, and here the 0.537 distance 

17 These operations can be carried out using the base R functions hclust() (default settings) and cutree().
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suggests itself as an independently motivated option for such an upper limit. Since we did not

have ‘isolates’ in our dataset, however, we did not have to introduce this amendment. In 

practice the NID distance between a clusterization obtained through the ‘nearest neighbor’ 

approach and the ISO 639-3 classification is 0.163, which is remarkably close considering 

that ISO 639-3 did not play any role in the classification process.

In Table 9 we offer pairwise comparisons of the different clusterizations with each other and 

with ISO 639-3, here ‘C-ISO’ for short. The clusterizations obtained by cutting the tree at 

0.327 and 0.537 are called C-0.327 and C-0.537, respectively, and the ‘nearest neighbor’ 

approach is called C-N.

Table 9.  NID distances between different clusterizations

Clusterizations compared NID

C-0.537 vs. C-ISO 0.427

C-0.537 vs. C-0.327 0.405

C-0.537 vs. C-N 0.408

C-ISO vs. C-N 0.163

C-0.327 vs. C-ISO 0.121

C-0.327 vs. C-N 0.126

The explorations of this section have shown that using a cut-off found by studying 

distance distributions does not necessarily lead to a classification that has a good fit with the 

ISO 639-3 classification of lects, at least not in a straightforward way; but it could be relevant

as an upper bound on distances among members of cluster obtained in some such way as the 

‘nearest neighbor’ approach tried out here. Given the data limitations we do not venture into 

more extensive explorations of possible practical implications of our findings for a dialect-

language classification. Not only is the set of doculects available limited, so is the set of 

words available for each lect. It is doubtful that more than very general observations can be 
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based on distances computed from just 18 lexical items. But a future study drawing upon the 

ASJP database and using a combination of clustering and a distance cut-off may lead to a 

meaningful and useful classification of speech varieties throughout the world into languages 

and dialects.

Finally, there are a couple of limitations of the present study which are worth 

mentioning. Although we show that the relatively small number of words is likely not 

affecting our results in major ways, a study based on a larger sample would be even more 

decisive. Another issue we were not able to address in this study, is the question of whether 

our results would generalize to other language families and socio-geographic situations. This 

is, of course, a question which needs to be tested empirically, but we are not aware of datasets

of comparable quality for other parts of the world. The Sound Comparisons dataset does 

provide data for some Andean varieties, but this is considerably less detailed and covers a 

smaller area. Alternatively, as we show, the ASJP transcription leads to distance measures 

that are not very different in quality from those based on the far more detailed phonetic 

transcription system used by the Sound Comparisons data, so similar grid-based studies could

be carried out for other parts of the world using the ASJP database, although metadata 

relating to language locations would have to revised.

5. Conclusion

In an essay called ‘Some issues on which linguists can agree’, a prominent linguist claimed, 

on the one hand, that “[t]here is no clear or qualitative difference between so-called 

‘language-boundaries’ and ‘dialect-boundaries’” while, on the other hand claiming that the 

number of languages in the world can be estimated at 4000-5000 even if “no precise figure is 

possible” because of the uncertainty referred to in the other claim (Hudson 1981: 336). While

some linguists perhaps agree that one can roughly estimate the number of languages in the 

world while also agreeing that this number is essentially unknowable, others try to be more 

methodological. Hammarström (2016) refers to lack of mutual intelligibility as a criterion for 

distinguishing languages and ventures an estimate of 6,500 languages (including known 

extinct languages).

This paper calls into question the claim that there is no identifiable transition between 

dialects and languages. More specifically, we have shown that the general results in 

Wichmann (2019), which support the existence of an identifiable transition, can be replicated 
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using a different, and in some regards perhaps more appropriate, dataset, consisting of 

European language varieties. We have shown that the distribution of distances in our dataset 

also clearly does follow a bimodal distribution and that, similarly to the findings of 

Wichmann, the two underlying distributions intersect at a distance (or similarity) close to 

fifty percent. 

At present we can think of two explanations for the bimodal distribution of distances. 

The first was voiced by Wichmann (2019: 830), who suggests that the phenomenon of mutual

intelligibility should be taken into account. He speculates that the proposed language-dialect 

distance cut-off may correlate with a point where mutual intelligibility between two lects A 

and B is so low that speakers of A and B will tend no longer to use their individual lects when

communicating with one another. The lects would then be less likely to influence one 

another, speeding up their differentiation, much as when a spring is released. The implied 

argument here is that a researcher would be relatively unlikely to record two lects in the 

precarious, transitional state. Clearly, more research on mutual intelligibility is needed to 

investigate this suggested. Another explanation for the bimodal distribution is the one alluded

to in the title of this paper. We have introduced ‘the half-way similarity avoidance rule’ as a 

term for describing the phenomenon that language varieties apparently tend not to be around 

half-way similar with respect to the kind of lexical-phonological data looked at here and in 

Wichmann (2019). If there really is some agency-driven avoidance going on, which is of 

course rather speculative, the underlying cause must be of a sociological nature. People 

belong to social groups, and groups that one caters to (in-groups) are often partly defined 

through non-membership in other groups (out-groups) (Tajfel 1974). Thus, it is natural to 

maintain a relation to one's peers which is distinctly closer than the relation to members of 

other groups, rather than a relation which is somewhere in between two groups. We 

hypothesize that the ‘rule’ may reappear using other areas of language than phonology and 

the lexicon, and perhaps even in other cultural manifestations. At the same time we are well 

aware that these ideas are quite immature and that they bring us into areas of research 

(sociology, social psychology, anthropology) that we need to get better acquainted with 

before attempting to develop them any further.

The robust, non-speculative result of this paper is that language variant pairs tend to 

fall in two clusters, even though there is a gray area in between, which in practice sometimes 

makes it difficult to distinguish them. Although this choice is not strictly necessary, we 
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choose the labels ‘dialect’ and ‘language’ for the clusters, in order to relate our findings to 

these traditional categories and to help define the latter better. But the empirical definitions of

dialects vs. languages depend on the data used, and for the practical purpose of cataloging 

languages vs. dialects, even for the geographical region considered in the present paper, the 

data at our disposal were likely insufficient.

There is plenty of room for more validation of an identifiable transition between 

dialects and languages, for further explorations of whether such a transition may ultimately 

be grounded in mutual intelligibility, and for also exploring sociological explanations. There 

are also prospects of practical applications, including the development of a new take on the 

distinction between languages and dialects at a world-wide scale.

Supplementary materials

The supplementary materials contain all the code used for the experiments, distances, models 

and plots. It also contains the distance matrices, substitution cost matrices, trees, and other 

materials necessary for replicating the present study. The supplementary materials can be 

found at https://doi.org/10.5281/zenodo.7752997 .
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