A typological view of analogy in morphology: some issues and possible solutions

Matías Guzmán Naranjo

1-4.09.2022

Spatial 1/24

Analogy in inflection: the state of affairs

It is hard to evaluate where we are at as a field, because:

- There are many different definitions of analogy
- There is no unity in our goals
- There is no unity in our core assumptions

Spatial 2/24

Analogy in inflection some issues

Why "we" like analogy-based models:

- Simpler architecture
- Fewer weird assumptions
- Certain inflectional patterns are easier to capture with proportions

Spatial 3/24

Motivation of this talk

Most work on analogy in inflection has heavily focused on affixal patterns.

However, there are other types of inflectional patterns rarely treated explicitly:

- Reduplication (Nahuatl, Latin, Persian, ...)
- Metathesis (Russian, Czech, ...)
- Harmony (Hungarian, Turkish, ...)
- Suprasegmental/tonal/length patterns (Russian, Kasem, Amuzgo)
- Free-morph-order (Chintang)
- Morph-positions (Swahili)
- etc.

These are trickier...

Spatial 4/24

Why formalisms?

Because:

- we need certainty that our models work
 - does the analysis actually capture the facts?
 - does the analysis interact well with other parts of the system?
 - does the analysis make testable predictions about unseen data?
- we need to be able to implement our models computationally
 - ▶ linguistic systems are massive, humans cannot evaluate analyses by hand.
 - testing many languages becomes impossible
- we need to be able to induce our models automatically

Spatial 5/24

How formalisms?

Things to consider:

- Minimum complexity
- Generative power
- Implementation
- Automatic induction

Juggling these can be tricky.

Spatial 6/24

Which formalism?

Formalisms in analogy are not new:

- X-notation (?, also some 90s computational linguistics work)
- String unification (Calder)
- X-notation improvement (Beniamine)
 - well implemented
 - can handle more complex patterns
 - ▶ fast
 - induction
- HPSG-based, relation append implementation (Guzmán Naranjo)
 - well implemented
 - can handle any pattern
 - very slow (it's TRALE!)
 - no induction

...

Spatial 7/24

Proportional analogies I

There are several proposals for writing proportions:

canto :: cantaba

- Xo
 ⇒ Xaba (from the traditional literature)
- o

 ⇒ aba / t_ (Bonami and Beniamine 2016)

These scale poorly.

Spatial 8/24

Proportional analogies II

For example:

- 1. carta :: casta
- 2. marbarpo :: marbaspo

Based on (1), we could postulate:

- $XrY \rightleftharpoons XsY$
- r ⇒ s / _ta

However, neither would work correctly on (2)

Spatial 9/24

Proportional analogies III

Another example:

• carta :: catra

This can't be expressed with either approach:

Does not even work when reapplied to the same alternation:

carta → catra, ctara

Proportional analogies VI

Other examples are even harder to capture

- pala :: palla
 - fira :: firra
- atá :: atà
 - iré :: firè

???

Spatial 11/24

A new formalism: a modest proposal

Key considerations:

- Can be written by hand
- Can be induced automatically
- Computationally implementable
- Blazing fast implementation for induction and application

Spatial 12/24

A new formalism: basic structure

We need a framework with more expressive power:

- Named variables with matching potential
- Segments
- (at some point in the future, maybe) feature structures

For the alternations:

- canto :: cantaba
- carta :: casta
- carta :: catra
- [<X1,*>o ⇌ <X1,*>aba]

Spatial 13/24

A new formalism: more patterns

With this system we can cover:

- affixes: prefixes, suffixes and infixes
- metathesis
- reduplication*

We could cover the following if we extended the system with feature structures:

- harmony
- feature alternations

But not:

- morph-positions (Swahili)
- free morph-order (Chintang)

Spatial 14/24

A new formalism: more patterns?

However, we can brute force these problem cases:

- maz :: mas
- pab :: pap

Can be covered with independent proportions

- <X,*>z ⇌ <X,*>s
- <X,*>b ⇒ <X,*>p

And similarly for harmony and related processes.

A new formalism: generative power?

I have no idea...

It is likely very similar to the generative power of PERL regular expressions.

However, some patterns cannot be captured: multiple free matching variables X*aY* (disallowed by design)

Spatial 16/24

Induction I

Inducing these proportions is straightforward. For a cell pair we do:

- find all optimal alignments between two forms
- non-contrastive material becomes a variable
- contrastive material is left unchanged
- the longest non-contrastive sequence gets a <,*>
- test the coverage of each alignment on all other pairs for the same cell pair
- select the alignment with greatest coverage

Spatial 17/24

Induction II

For example, given: casan :: icason

- 1. X1, X1, X1, a, X2↔ i, X1, X1, X1, o, X2
- 2. $\langle X1, *\rangle a \langle X2, 1\rangle \leftrightarrow i \langle X1, *\rangle o \langle X2, 1\rangle$

Spatial 18/24

Induction III

In the end, we have for each cell pair the following structure:

cell 1	cell 2	proportion
cas <i>a</i> las <i>a</i> api 	cas <i>o</i> las <i>o</i> api	<x1,*>a <= <x1,*>o <x1,*>a <= <x1,*>o <x1,*> <= <x1,*></x1,*></x1,*></x1,*></x1,*></x1,*></x1,*>

Knowing one cell and the proportion is enough to know the other cell.

Spatial 19/24

Induction IV

Finding non-segmental patterns requires writing look up methods to find those

For example, for metathesis:

- Set a maximum window for metathesis to occur (how many segments can we jump)
- Iterate over an alignment and postulate metathesis as a pattern
- · Check if the pattern fits
- Retry

Other types of patterns can be found in a similar way (though I've yet to implement them...)

Spatial 20/24

A new formalism: typological implications

We are making a strong prediction here:

• There are no systems which do: X*aX* = X*bX*

As far as I know, this does not exist.

Spatial 21/24

Concluding remarks

What have we learned?

- Formalization is important
- Induction is where we win
 - Most other "formalisms" cannot be induced
 - Induction allows easier exploration of large datasets, or at least assist in the exploration
 - Induction can be made fast and easy
- We need some sort of unification
- It's not clear that we need to capture all patterns found in inflectional morphology, sometimes we can just brute force them into submission

Spatial 22/24

To the demonstration...

Spatial 23/24

Thank you

Spatial 24/24

```
library(tidyverse)
library(analogyR)
ukr <- read_tsv("./ukr.tsv"
            , col names = c("lexeme", "form", "cell")) %>
   mutate(cell = cell %>%
              tolower %>%
              str_replace_all(., ";", "_")) %>%
   pivot_wider(names_from = cell, values_from = form) %>%
   select(lexeme:n_dat_sg) %>%
   na.omit()
ukr %>% select(n_acc_sg, n_acc_pl) %>% head
## 1 абажур -ø || абажур
                                   -M
## 2 абажурчик -ø || абажурчик -и
             -ø || абаз
   3 абаз
                               -и
##
```

Spatial 25/24

```
## 4 абазин -а || абазин -ів
## 5 абазинц -я | абазинц -ів
## 6 абазин -к -у || абазин -о -к
cell 1 <- ukr$n acc sg
cell_2 <- ukr$n_acc_pl
## build analogies between cell1 and cell2
an_acc_sg_acc_pl <- analogy_build(cell_1, cell_2)</pre>
ukr[1223,] %>% select(n acc sg, n acc pl)
## як-і- -ь як-о- -і
an acc sg acc pl[[1223]]
## [1] "<X1,0> <X3,1> <X2,2> ь <X1,0> о <X2,2> <X3,1>"
```

Spatial 26/24

```
## [2] "<X1,0> i <X2,2> ь <X1,0> o <X2,2> i"
## check all analogies work:
ans_u <- unique(unlist(an_acc_sg_acc_pl))</pre>
ans u %>% length
## we have 62 possible analogies
ans_u
## [1] "<X1,0> <X1,0> и"
```

Spatial 27/24

```
## [7] "<X1,0> o <X1.0> a"
## [8] "<X1,0> ю <X1,0> ї"
## [9] "<X1,0> 10 <X1,0> i"
## [10] "<X1,0> ь <X1,0> i"
## [11] "<X1,0> y <X1,0> i"
matches <- analogy_fits(cell_1, cell_2, ans_u, .nest = "st</pre>
## all analogies work
all(sapply(matches, any))
## check coverage
an coverage <- as.data.frame(do.call(rbind, matches))</pre>
## each column is a patter, each row is a pair the pattern
an coverage %>% head
```

Spatial 28/24

```
ans u[1]
## [1] "<X1,0> <X1,0> и"
cbind(cell_1, cell_2)[1:3,]
## [1,] "абажур" "абажури"
## [2,] "абажурчик" "абажурчики"
## [3,] "абаз" "абази"
which(apply(an coverage, 1, sum)==2)
cbind(cell_1, cell_2)[313,]
## cell_1 cell_2
## "вар -і- -ь" "вар -о- -і"
ans_u[unlist(an_coverage[313,])]
## [1] "<X1,0> <X3,1> <X2,2> ь <X1,0> о <X2,2> <X3,1>"
## pick best analogies
```

Spatial 29/24

```
colnames(an coverage) <- ans u
an coverage <- colSums(an coverage, na.rm = TRUE)
an acc sg acc pl 2 <- sapply(matches, function(mtch) {
        analogy pick(an coverage[mtch])
})
ans u2 <- unique(an acc sg acc pl 2)
ans_u2 %>% length
## 55
an_acc_sg_acc_pl_2[313]
## [1] "<X1,0> <X3,1> <X2,2> ь <X1,0> о <X2,2> <X3,1>"
```

Spatial 30/24